

Was > Kompatible Metallisierungen für silbergefüllte Epoxies

Weshalb > Punkte, die beim Einsatz von Leitklebstoffen in der Elektronik beachtet werden müssen

Kompatibilität von Metallisierungen mit elektrischleitenden Silberepoxies (ECAs = electrically conductive adhesives)

Warum Silber Epoxies?

Ag-gefüllte Epoxidkleber werden seit den 60iger Jahren verbreitet in der Verpackung von Halbleitern und anderer Elektronik eingesetzt. Sie stellen eine zuverlässige Methode anstelle von Löten und eutektischen Verbindungen dar

Als Folge des weltweiten Übergangs zu bleifreier Elektronik benutzt die Mehrzahl der Hersteller von elektronischen Komponenten reine Zinn- oder zinnhaltige Legierungen für die Anschlusspads. Dies hatte höhere Reflow-Temperaturen, weniger Dehnungsvermögen und eine höhere Wahrscheinlichkeit für die "Tin-Whisker"-Bildung (nadelartige Metallkristalle) zur Folge. Es ist bekannt, dass durch die Bildung dieser Tin-Whisker Lenkwaffen und Kommunikationssatelliten, Herzschrittmacher und Uhren versagt haben.

Diese Umstände beschleunigten den vermehrten Einsatz von ECAs. Während die ECAs Vorteile gegenüber zinnhaltigen Lötprozessen haben, muss das, worauf sie haften sollen, sorgfältig ausgewählt werden. Wenn es um elektrischen Kontakt geht, ist es wichtig, dass die Metallisierung ähnliches Potential hat, um galvanische Korrosion und nichtleitende Oxide zu vermeiden.

Was ist ein "Tin Whisker"?

Dabei handelt es sich um ein leitfähiges Zinnkristall, das spontan aus bleifreier, zinnbasierender Oberfläche sogar bei Raumtemperatur und oft in Nadelform herauswächst. Oxydation unter feuchten Bedingungen, Korrosion, intermetallische Reaktionen, Temperaturwechsel, und Elektromigration fördern die Whisker-Bildung.

Während reines Zinn am berüchtigtsten für die Whisker-Bildung ist, können sie auch aus anderen Metallen wachsen, so u.a. aus Kadmium, Silber und Zink.

Metalle & Metalloxyde

Palladium, Platin und Gold sind Edelmetalle, die bedingt durch ihre Elektronenkonfiguration nicht ohne weiteres oxidieren. Silber ist ebenfalls ein Edelmetall, welches aber unter gewissen Bedingungen oxidiert. Dieses Oxid ist jedoch leitend.

Blei und Zinn gehören zur Hauptgruppe der Metalle, die freie Elektronen zur Bildung von nicht-leitenden Oxiden zur Verfügung haben, welche ernste Leitfähigkeitsprobleme verursachen. Da diese Oxide sich auf der Oberfläche des Metalls bilden, können sie auch die Scherfestigkeit der Klebeverbindung erheblich beeinträchtigen.

Ag, Sn, Al Verbindungen

Silberepoxid sollte nie auf vorverzinnten Oberflächen verwendet werde, aus drei Gründen:

- Es ist ein industrielles Vermächtnis und gesunder Menschenverstand, dass Edelmetalle gerne mit anderen Edelmetallen verbunden werden.
- Silber und Zinn haben ungleiche Potentiale und neigen daher zu galvanischer Korrosion via Überzugbildung oder Rosten.
- Silber kann selber ein Katalyst für die Bildung von Tin Whiskers sein.

Man sollte reines Zinn vermeiden, indem man für die Metallisierung der Bauelemente Materialien verwendet, die keine Tendenz zur Whisker Bildung haben, also Au, Ag, AgPd, NiPdAu, Pt, Pd, Cu.

Aluminium bietet ein ähnliches Dilemma wie Zinn, nicht dass es Whiskers bildet, aber mit grosser Wahrscheinlichkeit rasch oxidiert. Aluminiumoxyd ist ein Isolator und ergibt eine um bis zu 50% schwächere mechanische Festigkeit als reines Aluminium.

Verträglichkeitsübersicht

Markt	Sektor	Kompatible Metalle	Kommentare Kompatibilitäten
Halbleiter	Wafers	Pd, Ni/Pd/Au	Al metallisierte I/O's müssen remetallisiert werden
	Lead-frame	Cu, Ag, Legierung 42	Die-Attach Pads, Sn-Lead Frames vermeiden
Hybrid Mikro- Elektronik	Die Attach	Au	Au-Keramiksubstrate, Chips mit Au-Unterseite
	SMD Attach	Au, Ag, AgPd	Keine Sn/Pb-metallisierte SMDs
	EMI/RF Schutz	Messing, SST, Kovar	Ohmsche Kontakte für Erdungszwecke
Elektronikmontage	Akustik	Au, Cu	PCB-Pads
		PZT, oder ähnlich	Piezoelektrische Materialien
	PCB Level	Au, Cu	Nie auf Sn/Pb oder SnAgCu Lötpads
	RFIDs	Ag, Au	Kontaktpads auf Substraten
		PTF-Ag Tinte	Antennenspulen für RF
	SMD Kappen	Au, Ag, AgPd	Dürfen keine SnAgCu oder Sn/Pb Anschlüsse sein
	Tantalum Kappen	Au	Industrielle Standardanschlüsse
	Solarzellen	SnO, ZnO	Transparent leitende Oxide - TCO
		Al/Cu, Cu/Sn, Cu/Ag	Ribbon wires
		Mo, Ag, Ni, Cr, TCOs	PV –Substrate
Medizintechnik	Schrittma- cher	Au/Keramik	Substrate verpackt in Hybridform
	Katheter	Pt/Ir	Führungsdrähte, Fluoroskopie
Optoelektronik	Glasfaser- technik	Messing, SST, Kovar	Metallgehäuse , EMI-Schutz
		Au/Keramik	Opto-Schaltungen, oder optische Bank
		Lithium Niobat	Die-Attach optische Chips
	Sensoroptik	SST, Messing	EMI-Schutz
	Kameraoptik	Au	Gewöhnliche Verbindungen
	Röntgenoptik	Au-metallisierte Scintillatoren	Elektrische Brücken für Photodetektor-Arrays
	LEDs	Cu, Ag spot lead frame	Die Attach LED Chips, single chip packages
		Cu, Au	LED arrays auf PCB
	LCD / OLED	ITO	TCO Schicht
		Au, Cu	Elektrische Brücken auf PCB/Substrate

Silbergefüllte Epoxies +'S

- kompatibel mit Si, GaAs, In, P und MEMs Chips
- Halten bleifreie Reflow-Temperaturen von 260 °C aus
- Passen gut auf Au-, Ag-, AgPd-Anschlüsse von Kondensator- und SMD-Widerständen
- Gute Haftung auf Pt-, PD-, Au-, Ag-, Ni- und Cu- Oberflächen
- Ausgezeichnete Alternative zu Lötverbindungen
- Thermische Leitfähigkeit vergleichbar mit Lötverbindungen

Silbergefüllte Epoxies -'S

- Nicht verträglich mit Sn, Al, und SnAgCu- Lötoberflächen
- Sollte nicht auf verzinnten Kontaktpads verwendet werden
- Kann im gehärteten Zustand nicht draht- oder bandgebondet werden und ist für Lötverbindungen ungeeignet.
- Vor dem Bonden auf Cu und Ni sollten diese deoxydiert werden.

Auf <u>www.epotek.com</u> Technical Info finden Sie weitere Tech Tipps.